
DOE Toolkit© User Guide 
Version 2.0.3 

© Copyright 2020 Harper Corditt Software 

 

Mathematica® is a registered trademark of Wolfram Research. 



Table of Contents 

The code for all the examples presented in this document is included in the companion DOE Toolkit 
User Guide 2.0.nb Mathematica® notebook. 

Introduction  

DOE Toolkit Setup 

Loading the DOE Toolkit in Your Notebook 

Requesting Your Activation Key 

Notation Used in This Users Guide 

Datasets and XDesigns 

Common Features of DOE Toolkit Functions 

Common Options for DOE Toolkit Functions 

Box-Behnken Designs 

Central Composite Designs 

Full Factorial Designs 

Fractional Factorial Designs 

Mixture Designs 

Orthogonal Designs  

Optimal Designs 

Desirability Manipulator 

Augmenting a Design 

Creating Taguchi Designs  

Obtaining Version Information 

Reporting a Problem 

Getting Help 

Appendix 1: DOE Toolkit Function Summary 

DOE Toolkit	 Page 	1



Appendix 2: Common Options for DOE Toolkit Functions  

Appendix 3: Editing a Dataset 

Appendix 4: Suggested Resources  

Appendix 5: References 

Index 

DOE Toolkit	 Page 	2



Introduction 

DOE Toolkit provides seven functions that allow you to generate experimental designs for the 
following design methodologies: 

Screening: doeFactorial, doeFractional 

Response Surface: doeCentralComposite, doeBoxBehnken 

Mixture: doeMixture 

Orthogonal: doeOrthogonal 

Each DOE Toolkit function provides options that allow you to add blocking to any design and to 
randomize the runs.  With the exception of the doeMixture function, each DOE Toolkit function 
provides options that allow you to add central points and axial points to your design. 

A DOE Toolkit function returns the experimental design that it creates in the form of an XDesign 
object.  An XDesign object is simply a 2-part list; the first part is a Dataset object and the second part 
is a list of metadata that describes the generated design. 

You can also augment a design that was created by one of the DOE Toolkit functions by using the 
doeAugment function.  You supply the XDesign object that was returned by the DOE Toolkit function 
you used to create the design as input to the doeAugment function.  See the Augmenting a Design 
section for more information.  

Once you have created a design using one of the DOE Toolkit functions, you can use the 
doeOptimal function to find an optimal subset of runs based on that design. 

After you have performed the experiment based on your design and recorded the experimental 
results, the doeDesirability function allows you to visually explore the consequences of changing 
factor settings in a multiple response model. 

If you need to edit the Dataset object component of an XDesign object (for example, to add extra 
rows or to modify an existing row or to add a new column), the DOE Toolkit provides a set of 
examples that illustrate how to perform the most common row and column operations with a Dataset.  
For more information, see Appendix 3: Editing a Dataset. 

The DOE Toolkit v2.0.0 runs on Windows, Macintosh, and Linux and is compatible with Mathematica 
12.0 or higher. 

Please note: In most of the examples in this document as well as in the companion DOE Toolkit 
User Guide 2.0.nb notebook, we set the RandomizeRuns option (which is an option shared in 
common by all DOE Toolkit functions) to False.  This is done for the purpose of making the table that 
results from evaluating a given DOE Toolkit function easier to inspect and ensures that the same 
table results if the same function is repeatedly evaluated.  As a general rule, when you use the DOE 
Toolkit functions in your work, the RandomizeRuns option should be set to True (which is its default 
value).  The easiest way to ensure that this is the case is to simply avoid specifying the 
RandomizeRuns option. 

DOE Toolkit	 Page 	3



DOE Toolkit Setup 

There is no installer for the DOE Toolkit.  When you purchase the DOE Toolkit product you will be 
provided with a zip file named DOE Toolkit.zip that you should download and unzip on your 
computer. 

Note: If you have previously downloaded the demo version of the DOE Toolkit, we recommend that 
you Exit/Quit Mathematica and then delete the folder that contains the demo version before you 
download and unzip the purchased version of the DOE Toolkit. 

For Windows: 

We suggest that you first create a directory on your PC and name it DOE Toolkit. This 
directory will receive the files that are extracted from the zip file. 

When you download the zip file, you will be prompted with a window similar to the one 
shown below (if you do not see this window, which sometimes takes a few moments to 
appear, go to your Downloads directory and double-click the DOE Toolkit.zip file): 

 

Click the Open button.  Depending on the unzip utility you are using, you should see a 
window similar to the following: 

DOE Toolkit	 Page 	4



 

Select the option: “Yes, unzip the files to a folder I choose”. 

You will be presented with a browser-style window that allows you to navigate over your file 
system.  Navigate to the DOE Toolkit directory you previously created and select it: 

 

Click the Unzip button.  You can now Exit your unzip utility. 

DOE Toolkit	 Page 	5



For Macintosh: 

When you download the DOE Toolkit.zip file, you will see a prompt similar to the window shown 
below: 

 

Click the button labeled “Open with” and make sure the Archive Utility is selected in the associated 
drop-down menu.  Click the OK button. 

This should cause your Downloads folder to open.  (If it does not, then you will need to open your 
Downloads folder manually.)  You should see the DOE Toolkit.zip file in your Downloads folder.  
Double-click the zip file to extract its files.  This will create a folder named DOE Toolkit in your 
Downloads folder as shown below: 

 

Drag/Copy the DOE Toolkit folder to a folder on your computer which will be easy to find later, such 
as your Documents folder. 

DOE Toolkit	 Page 	6



The DOE Toolkit directory provided by the DOE Toolkit.zip file contains the following files: 

DOE Toolkit.wl 
DOE Toolkit User Guide 2.0.nb 
DOE Toolkit User Guide 2.0.pdf 

A brief description of these files is given below: 

DOE Toolkit.wl is a Wolfram Language Package (.wl file extension) that contains the definitions of the 
functions provided by the DOE Toolkit.  This version of the DOE Toolkit requires you to activate the 
product.  The first time you load the DOE Toolkit.wl package into your Mathematica notebook, you 
will be prompted to request an activation key.  For more information, consult the section, Requesting 
Your Activation Key. 

DOE Toolkit User Guide 2.0.nb is a Mathematica notebook that contains working code for all the 
examples contained in this User Guide. 

DOE Toolkit User Guide 2.0.pdf is this document. 

DOE Toolkit	 Page 	7



Loading the DOE Toolkit in Your Notebook 

In order to be able to use the functions provided in the DOE Toolkit, you must load the DOE 
Toolkit.wl file (which is a Wolfram Language Package) in your notebook. 

For Windows: 

Let’s suppose that after you downloaded the DOE Toolkit.zip file, you extracted its contents to a 
directory named DOE Toolkit on your C: drive.  To load the DOE Toolkit, you would evaluate the 
following line in your notebook: 

 

Note that the input to the Get function is a double-quoted string that provides the path to the DOE 
Toolkit.wl package.  Observe that the back-slash characters are doubled, which tells Mathematica to 
treat each occurrence of “\\” as a literal backslash character. 

For Macintosh: 

Let’s suppose that after you unzipped the DOE Toolkit.zip file, you copied the DOE Toolkit folder it 
contains to your Documents folder.   To load the DOE Toolkit, you would evaluate the following line 
in your notebook: 

 

For Linux: 

Let’s suppose that when you unzipped the DOE Toolkit.zip file, you extracted its contents to a 
directory named DOE Toolkit which is located in your home directory.   To load the DOE Toolkit, you 
would evaluate the following line in your notebook: 

 

When you first load the DOE Toolkit, you will see a progress bar such as the one shown below: 

 

It may take a minute or so for the Wolfram server to initialize.  Please be patient. 

Eventually the progress bar will start to “move” as the status of your activation key request (if any) is 
determined: 

Get["C:\\DOE Toolkit\\DOE Toolkit.wl"] 

Get["~/Documents/DOE Toolkit/DOE Toolkit.wl"] 

Get["~/DOE Toolkit/DOE Toolkit.wl"] 

DOE Toolkit	 Page 	8



 

If this is the first time you have loaded the DOE Toolkit, you will be prompted to request an 
activation key.  Consult the section, Requesting Your Activation Key for more details. 

Otherwise, if you have previously requested an activation key and your request is still pending 
approval, when you load the DOE Toolkit, you will see a message similar to the one shown below: 

 

As long as the DOE Toolkit.wl file loads successfully, the DOE Toolkit is fully functional. 

Once your activation key request has been approved, the next time you load the DOE Toolkit, you 
should see a message such as the one shown below: 

 

You should load the DOE Toolkit only once per session.  Because the functions defined in the package 
are read-only and protected, attempting to read in the package a second time is likely to generate 
errors.  One way to ensure that the DOE Toolkit.wl file is not evaluated more than once in the 
current session to wrap the Get[] expression inside some conditional logic as illustrated by the 
example below.  The example assumes that you are running on Windows, but the same approach 
will work for Macintosh and Linux/UNIX. 

 

Note that when you load the DOE Toolkit for the first time, you must have the Google Chrome 
browser installed on your machine; otherwise, the DOE Toolkit will return an error when you 
attempt to load the DOE Toolkit.wl file.  In addition, the chromedriver.exe driver must be contained 
in your Mathematica installation. 

If you do not wish to install the Google Chrome browser or if you are unable to load the DOE 
Toolkit.wl file for any other reason, please contact Harper Corditt Software.  We will send your 
activation key via email.  When you contact us, be sure to provide your Mathematica License ID, 
which you can obtain by evaluating the following line in any notebook: 

 

pathToDOEToolkitInstallDir = "C:\\DOE Toolkit 2.0"]; 
If[Length[Position[$Path,pathToDOEToolkitInstallDir]]==0, 
    PrependTo[$Path,pathToDOEToolkitInstallDir]]; 
If[Length[Position[$Packages,"DOEToolkit`"]]==0, 
    Get["DOE Toolkit.wl"]];

$LicenseID 

DOE Toolkit	 Page 	9



Requesting Your Activation Key 

The first time you load the DOE Toolkit, you will be prompted to request an activation key: 

 

After you fill in the fields of the dialog and click the Request button, your request for an activation 
key will be submitted to Harper Corditt Software. 

Assuming there are no errors, you should see the following message in your notebook: 

 

Until you have received your activation key, the status of your key request will be checked whenever 
you load the DOE Toolkit.  For this reason, you must have a connection to the internet when you first 
start using the DOE Toolkit. 

Even though your request for an activation key is pending approval, the DOE Toolkit is fully functional 
so you use any of its functions at this point. 

It may take up to48 hours for your key request to be approved.  After this happens, the next time 
you load the DOE Toolkit, the fact that your activation key was approved will be detected and your 
activation key will be preserved on your machine, in the directory/folder where the product is 
installed.  The activation key will be stored in an encrypted file named doetkkey.txt.mx.  From that 
point on, you can use the DOE Toolkit without having an active internet connection. 

Do not delete the doetkkey.txt.mx file.  The doetkkey.txt.mx file cannot be transferred to another 
Mathematica license.  If you have more than one license for Mathematica and want to use the DOE 
Toolkit with multiple Mathematica licenses, contact Harper Corditt Software. 

   

DOE Toolkit	 Page 	10



Notation Used in This Users Guide 

Throughout this document, we use a bold monospaced font to represent Mathematica expressions 
that you would enter as input in your notebook.  Such code examples are usually also surrounded 
with a thin blue rectangle like so: 

 

Output to your notebook is represented in this document in different ways.  If the output is a 
Mathematica dataset, then we use a screen capture of the Dataset object itself.  For example, after 
evaluating the expression above, the following Dataset object is output to your notebook:  

 

Other types of non-Dataset output are usually represented by screen captures.  The output is 
surrounded by a thin, red rectangle with rounded corners.  For example, suppose you evaluate the 
expression below:  

 

In your notebook, you should see the following lines: 

 

In our notation, the output in this case would be represented as follows: 

fullfactxdsn=doeFactorial[{"X1","X2","X3"}, 
{{0.7,1.7},{40,60},{1.8,2.8}}, 
"RandomizeRuns"->False]; 
fullfactxdsn[[1]]

fullfactxdsn[[2]]

DOE Toolkit	 Page 	11



 

When you enter code in your notebook that uses a DOE Toolkit option or the keyword for the value of 
some DOE Toolkit option, it is important to keep in mind that you must surround the option or keyword 
value with double-quotes.  For example, suppose you wish to generate a full factorial design in which 
every run is replicated twice.  In order to do this, you would specify the NumReplicates option, set 
to the value 2.  To set the NumReplicates option to 2, you would enter your code as shown below 
(note the double quotes surrounding the option name): 

 

However, in this document, in order to make the text more readable, we drop the double quotes 
around option names and keyword values and instead use a bold monospaced font to refer to the 
option (or keyword value).  For example, here is a snippet from the section of this document that 
describes the RandomNumberSeed option: 

RandomNumberSeed->rSeed, where rSeed is either the keyword 
BasedOnCurrentTime or else an integer or a string. 

Note how the option name (RandomNumberSeed) and the keyword value (BasedOnCurrentTime) are 
rendered in unquoted bold monospaced font.   To repeat: even though we do not surround DOE 
Toolkit option names or their keyword values in double-quotes in this document, when you wish to 
use a DOE Toolkit option or keyword value in a Mathematica expression, you must surround it in 
double quotes.   

As the example above also illustrates, we will often highlight part of an expression using the color 
cyan in order to draw attention to some aspect of the syntax.  Although you can color your 
Mathematica code if you wish, it certainly isn’t necessary! 

Lastly, when describing the syntax of a rule, we sometimes use “LHS” to abbreviate the phrase: “left-
hand side” and “RHS” to abbreviate the phrase: “right-hand side”.  For example, in our description of 
the CentralPoints option, we say: 

You assign a list of insertion rules of the form LHS->RHS to the CentralPoints 
option.  The LHS of the rule is either one of the keywords: {Top, Bottom, Middle} 
or else a row number, which indicates the insertion location.  The RHS of the rule 
indicates the number of central points to be inserted at the designated location.   

  

fullfactxdsn=doeFactorial[{"X1","X2","X3"}, 
{{0.7,1.7},{40,60},{1.8,2.8}}, 
"NumReplicates"->2]

DOE Toolkit	 Page 	12



Datasets and XDesigns 

The functions in the DOE Toolkit return what we call an XDesign (Experimental Design) object).  An 
XDesign object is a 2-part list whose first part is a Mathematica Dataset object and whose second 
part is a list of metadata.  The Dataset component encapsulates the list of runs that were generated 
by the DOE Toolkit function.  The metadata component describes various properties of the 
experimental design that was generated by the function. 

The Dataset function is a very powerful function that was introduced in Mathematica 12.0 and which 
has been significantly improved in Mathematica 12.1.  It would go far beyond the scope of this 
document to attempt to describe all its features.  For more information, please consult the 
Mathematica documentation: https://reference.wolfram.com/language/ref/Dataset.html 

By encapsulating the runs produced by a DOE Toolkit function in the form of Mathematica Dataset, 
we enable the user to take full advantage of the Dataset object for the purposes of viewing, 
manipulating, and analyzing their experimental results. 

The easiest way to view the XDesign object returned by a DOE Toolkit function is to display its two 
parts separately.  Mathematically automatically formats the first part (the Dataset object) for you.  One 
way to display the second part (the metadata list) is to use the TableForm function. 

For example, suppose you evaluate the doeFactorial function as shown below to create a full 
factorial design for 3 variables, each of which has 2 levels: 

 

The following lines will display the 2 parts of the XDesign object returned by the doeFactorial 
function: 

 

fullfactxdsn[[1]] outputs the Dataset object: 

fullfactxdsn=doeFactorial[{"X1","X2","X3"},{{0.7,1.7}, 
{40,60},{1.8,2.8}}, 
"RandomizeRuns"->False];

fullfactxdsn[[1]] 
fullfactxdsn[[2]] // TableForm

DOE Toolkit	 Page 	13

https://reference.wolfram.com/language/ref/Dataset.html


 

fullfactxdsn[[2]] outputs the metadata list in TableForm: 

 

If you need to augment your design, the DOE Toolkit provides the doeAugment function to help you 
make the necessary modifications.  For more information, see the Augmenting a Design section. 

If you need to edit a Dataset object, for example, to add extra rows or to modify an existing row or to 
insert a new column, the DOE Toolkit provides a set of examples illustrating how to perform the most 
common row and column Dataset operations.  For more information, see Appendix 3: Editing a 
Dataset. 

DOE Toolkit	 Page 	14



Common Features of DOE Toolkit Functions 

Whenever you evaluate a DOE Toolkit function, the first parameter (call it factors) you supply to the 
function is always a list of factor names.  With the exception of the doeMixture function, the second 
parameter (call it levelsList) you supply to the function is always a list of sub-lists, where each sub-list 
provides the values that can be achieved by a particular factor.   We call a sub-list of this kind a ”
level-list”. 

The length of the factors parameter must equal the length of the levelsList parameter. 
Each element of the factors parameter is a double-quoted string. 
Each element of the levelsList parameter is a level-list.  A given level-list contains one or more values 
that are the levels that can be achieved by the factor to which the level-list belongs. 
The order in which level-lists are provided in the levelsList parameter is assumed to match the order 
of the factors in the factors parameter.  In other words, it is assumed that the level values of 
factors[[J]] are provided by the level-list levelsList[[J]]. 

For example, suppose you evaluate the doeFactorial function as follows: 

 

This creates the output shown below.  Note: We have also set the RandomizeRuns option to False, 
to make it easier to verify that a full factorial design has been produced.  Ordinarily, you will want to 
set the RandomizeRuns option to True (which is the default). 

 

factors={"X1","X2","X3"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	15



The doeFactorial function has generated a Dataset object that represents a full factorial design with 
the following properties: 

(1) There are 3 columns for the factors involved, named “X1”, ”X2”, and “X3”.  
(2) The “X1” factor is a 2-level factor whose values can be: 0.7 or 1.9. 
(3) The “X2” factor is a 3-level factor whose values can be: 40, 50, or 60. 
(4) The “X3” factor is a 2-level factor whose values can be: 1.8 or 2.3. 

The value returned by a DOE Toolkit function is always an XDesign object.  (See the Datasets and 
XDesigns section for more information about XDesigns.) 

Ordinarily, the Dataset object will contain a column on the left which shows row numbers for the runs 
in the design.  You can turn off the column of row numbers by setting the RowNumbers option to 
False. 

By default, any DOE Toolkit function will represent the data in the resulting Dataset in the form of the 
actual factor level values involved.  You can control this behavior by means of the 
DataRepresentation option.  For example, you can set this option to 
DataAreLevelListIndices, and in that case, the resulting design will display level list indices for 
the data as shown: 

 

 
For example, row 11 indicates that the X1 factor is at level 1,the X2 factor is at level 3, and the X3 
factor is at level 2.  If you prefer to use this form of data representation, then you will probably want to 

factors={"X1","X2","X3"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False, 
"DataRepresentation"->"DataAreLevelListIndices"]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	16



turn off the Pattern column (set the PatternColumn option to False) since it duplicates the data in 
the factor columns. 

You can also set the DataRepresentation option to a customized list H, whose elements are lists 
of symbols (aka symbol-lists).  For any number N, if the design contains a factor that has N levels, 
then H must contain a symbol-list of length N.  For example, if there is a 2-level factor in the design, 
then H must contain a 2-part symbol-list (call it K).  The values in K will be used to represent the 
levels for all 2-level factors in the design.  The length of H must equal the number of distinct level 
counts found in all the factors of the design.  And H must be ordered by the distinct level counts.  For 
example, if every factor in the design is either a 2-level or a 3-level factor and there is at least one of 
each type, then the length of H must be 2.  The first symbol-list in H must be of length 2 and the 
second symbol-list in H must be of length 3. 

For example, suppose you want to represent the “low” setting of a 2-level factor by the Alpha 
character and the “high” setting of a 2-level factor by the Beta character.  Meanwhile, for 3-level 
factors, you want to represent “low”, “middle,” and “high” values by the Club, Diamond, and Heart 
characters, respectively.  In this situation, H would be the list: {{"α","β"},{"§","¨","©"}}. 

Evaluating the doeFactorial function as shown:  

 

will produce the following design: 

factors={"X1","X2","X3"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False, 
"DataRepresentation"->{{"α","β"},{"§","¨","©"}}]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	17



 

Colors can be used as symbols.  For example, suppose you want to represent the “low” setting of a 2-
level factor by the Red and the “high” setting of a 2-level factor by Green.  Meanwhile, for 3-level 
factors, you want to represent “low”, “middle,” and “high” values by Orange, Blue, and Purple, 
respectively. 

Evaluating the doeFactorial function as shown:  

 

will produce the following design: 

factors={"X1","X2","X3"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False, 
"DataRepresentation"->{{Red,Green},{Orange,Blue,Purple}}]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	18



 

By default, any DOE Toolkit function will also create an additional column in the resulting Dataset 
named “Pattern”.  Each row of the “Pattern” column contains a string that represents the pattern of 
factor levels for that row in the design.  You can turn off the “Pattern” column by setting the 
PatternColumn option to False. 

You can control the format of the strings in the “Pattern” column by using the 
PatternRepresentation option.  By default, the PatternRepresentation option is set to 
PatternsAreLevelListIndices and the strings in the “Pattern” column consist of concatenated 
level indices for each run. 

When the PatternRepresentation option is set to PatternsAreMinusZeroPlus, the strings in 
the “Pattern” column obey the following rules: if every factor in the design has 2 levels, a given row of 
the “Pattern” column will display a string of “-“ and/or “+” signs.  If some factor has 3 levels, a given 
row of the “Pattern” column will display a string of “-“ and/or “+” signs and/or zeros.  If some factor has 
only 1 level or more than 3 levels, a given row of the “Pattern” column will display a string of “-“ and/or 
“+” signs and/or zeros and/or indices of the levels of the factors in that row. 

You can also set the PatternRepresentation to a customized list of symbol-lists, following the 
same rules as described for the case where the DataRepresentation option is set to a list of 
symbol-lists. 

For example: 

DOE Toolkit	 Page 	19



 

will produce the following design: 

 

Note that the doeMixture function does not support either the DataRepresentation or 
PatternRepresentation option.  Data in a doeMixture design is always represented in terms of 
fractions.  Patterns are represented either in terms of fraction lists or bar charts  For more information, 
see the Mixture Designs section. 

Unless you specify otherwise, Mathematica will determine how many rows of a Dataset object are 
displayed in your notebook.  This means that for designs with several runs, Mathematica will only 
display a portion of the runs in the view it renders.  In that case, Mathematica will provide a vertical 
scrollbar along the left side of the Dataset viewer.  It will also provide chevrons (buttons) at the bottom 
of the Dataset viewer that allow you to navigate through the view of the design.  For example: 

 

factors={"X1","X2","X3"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False, 
"PatternRepresentation"->{{Red,Green},{Orange,Blue,Purple}}]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	20



If you know the total number of runs in the design and you want the Dataset viewer to display them 
all, then you should specify the DatasetOpts option when you evaluate a DOE Toolkit function.  
Within the list of options you supply to the DatasetOpts option, you can specify the MaxItems 
option (which is a Dataset option).   For example, if the total number of runs in the design is less than 
or equal to 64, setting the MaxItems option via the DatasetOpts option as shown below will cause 
the Dataset viewer to display all rows: 

 

factors={"X1","X2","X3","X5","X6"}; 
levelsList={{0.7,1.9},{40,50,60},{1.8,2.3},{100,150},{23,43},{75,85}}; 
factorialxdsn=doeFactorial[factors,levelsList, 
"RandomizeRuns"->False, 
"DatasetOpts"->{MaxItems->64}]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	21



Common Options for DOE Toolkit Functions 

We have already described the DataRepresentation and PatternRepresentation options in 
the Common Features of DOE Toolkit Functions section.  In this section we discuss some of the other 
options that are supported by all DOE Toolkit functions. 

Blocking a Design 

In practice is common to use Randomized Block Design in order to eliminate the effects of so-called 
nuisance (aka blocking) factors in an experiment.  The basic concept is to create homogeneous 
blocks within a design in which the blocking factors are held constant and the factor(s) of interest is/
are allowed to vary. 

You can think of a randomized block experiment as a collection of completely randomized 
experiments, each run within one of the blocks of the total experiment. 

It is very straightforward to generate a randomized block design for any function in the DOE Toolkit.  
You simply specify the Blocking option, which points to a list of rules of the form: 

BFactor->BLevelList. 

The LHS of each rule (BFactor) provides the name to be assigned to the blocking factor.  The RHS of 
each rule (BLevelList) is the list of levels associated with BFactor. 

For example: Blocking->{"Operator"->{1,2,3}} specifies that "Operator" is to be used as a 
blocking factor with 3 levels: {1,2,3}. 

Suppose you are performing an agricultural experiment that involves 3 different fertilizers {X1,X2,X3}, 
each of which will be applied at 2 different levels.  (For example, X1 will be applied at 5 ounces and 
10 ounces, X2 will be applied at 4 and 12 ounces, and X3 will be applied at 8 and 16 ounces.)  You 
want to create a full factorial design for the experiment.  In order to conduct the experiment, 2 plots of 
land are used where the 3 fertilizers will be applied to the crop on each plot.  To eliminate the effect 
that a particular plot may have on the outcome of the experiment, we introduce a new (blocking) 
factor called “Plot” which has 2 levels {1,2} for the 2 plots involved. 

Evaluating the doeFactorial function as shown below will generate the desired randomized 2 block, 
full factorial design that follows. 

 

factors={"X1","X2","X3"}; 
levels={{5,10},{4,12},{8,16}}; 
xdsn=doeFactorial[factors,levels, 
"Blocking"->{"Plot"->{1,2}}]; 
xdsn[[1]]

DOE Toolkit	 Page 	22



 

By default, the BlocksAreRows option is set to True.  When the BlocksAreRows option is set to 
True, a column for each blocking factor is added to the Dataset and the runs corresponding to a given 
combination of levels of the blocking factors (aka blocks) are added as rows to the design.   

When the BlocksAreRows option is set to True, as rows are added for each block, the rows are 
alternately colored with two different colors.  You can control these colors with the BlockColors 
option.  The BlockColors option should be set to a list of two colors.  By default, the BlockColors 
option is set to the list {LightBlue, White}.  In the example above which has 2 blocks, the first 8 
rows, corresponding to the first block, are colored light blue and the second 8 rows, corresponding to 
the second block, are colored white.  Here is the same design but with the BlockColors option set 
as: BlockColors->{ LightRed,Orange}: 

 

factors={"X1","X2","X3"}; 
levels={{5,10},{4,12},{8,16}}; 
xdsn=doeFactorial[factors,levels, 
"Blocking"->{"Plot"->{1,2}}, 
"BlockColors"->{LightRed,Orange}]; 
xdsn[[1]]

DOE Toolkit	 Page 	23



 

If you set the RandomizeRuns option to True, then as a block is added to the design, the order of its 
runs is randomized.  By default, the RandomizeRuns option is set to True.  In the example above, 
the rows within each block have been randomized. 

Meanwhile, if the BlocksAreRows option is set to False, then the BlockColors option is ignored.  
Columns are added to the Dataset such that there is a column for each combination of levels of the 
blocking factors and no rows are added to the design.  If you don’t need to randomize the runs within 
each block, then you may find this is a more convenient way to work with the design.  For example, 
here is the design that results with the BlocksAreRows option set to False for the same 2-level 
“Plot” blocking factor: 

 

factors={"X1","X2","X3"}; 
levels={{5,10},{4,12},{8,16}}; 
xdsn=doeFactorial[factors,levels, 
"Blocking"->{"Plot"->{1,2}}, 
"BlocksAreRows"->False, 
"BlockColors"->{Green,Yellow}]; 
xdsn[[1]]

DOE Toolkit	 Page 	24



 

Blocking by Aliasing and Incomplete Block Designs: See the Fractional Factorial Designs section for 
information on these topics. 

Other Common Options 

You can add central points to any design (with the exception of designs generated by the doeMixture 
function) by using the CentralPoints option. 

You assign a list of insertion rules of the form LHS->RHS to the CentralPoints option.  The LHS of 
the rule is either one of the keywords: {Top, Bottom, Middle} or else a row number, which indicates 
the insertion location.  The RHS of the rule indicates the number of central points to be inserted at the 
designated location.  For example: 

 

The result is shown below: 

factors1={"X1","X2","X3"}; 
levelsList1={{0.7,2.7},{40,60},{1.8,2.3,2.8}}; 
factorialxdsn =doeFactorial[factors1,levelsList1, 
"RandomizeRuns"->False, 
"CentralPoints->{"Top"->1,"Bottom"->3,"Middle"->2,4->1}]; 
factorialxdsn[[1]]

DOE Toolkit	 Page 	25



 
In the example above, 1 central point was inserted at the top of the design, 3 were added to the 
bottom, 2 were added to the middle, and 1 was added at row 4 (relative to the original design, prior to 
adding any central points). 

The CentralPoints option supports the NPerFactor keyword when specifying the number of 
central points to be inserted.  For example, the code below will generate a design in which 6 central 
points are inserted at the top: 

 

Similarly, you can add axial (aka star) points to any design (with the exception of designs generated 
by the doeMixture function) by using the AxialPointGroups option.  You assign a 2-part list to the 
AxialPointGroups option.  The first part is either a number or an alpha-type from the list: 
{Rotatable,Orthogonal,Spherical}.  The second part is a list of insertion rules exactly the 

factors1={"X1","X2","X3"}; 
levelsList1={{0.7,2.7},{40,60},{1.8,2.8}}; 
factorialxdsn=doeFactorial[factors1,levelsList1, 
"RandomizeRuns"->False, 
"CentralPoints"->{"Top"->"NPerFactor"->2}]; 
factorialxdsn[[1]] 

DOE Toolkit	 Page 	26



same as those used by the CentralPoints option.  If you set Part 1 to one of the alpha-types, then 
the value of alpha will be computed based on a formula that takes into account some or all of the 
following properties of the design: number of factors, number of levels per factor, number of central 
points.  The alpha-types Rotatable and Orthogonal.can only be used when the number of levels 
per factor is a constant. 

Since axial points are always inserted as a group (2 rows are added to the design for each factor), the 
number you specify as the RHS of an insertion rule in the AxialPointGroups option is the 
number of groups to be inserted. 

For example: 

 

The result is shown below.  One group of axial points (6 rows) is inserted at the bottom of the design: 

factors1={"X1","X2","X3"}; 
levelsList1={{0.7,2.7},{40,60},{1.8,2.8}}; 
factorialxdsn=doeFactorial[factors1,levelsList1, 
"RandomizeRuns"->False, 
"AxialPointGroups"->{"Orthogonal",{"Bottom"->1}}]; 
factorialxdsn[[1]] 

DOE Toolkit	 Page 	27



 

You can add your own metadata to the design generated by a DOE Toolkit function by specifying the 
MyMetadata option.  This option must be set to a list of rules.  The LHS of each rule can be any 
string.  For example: 

 

You can set various properties of the Dataset object returned by a DOE Toolkit function by specifying 
the DatasetOpts option.  This option must be set to a list of options that are supported by 
Mathematica’s Dataset object.  We described in the Common Features of DOE Toolkit Functions 
section how you could control the number of rows displayed in the Dataset object by passing the 
MaxItems Dataset option to the Dataset object via the DOE Toolkit DatasetOpts option.  In the 

factors1={"X1","X2","X3"}; 
levelsList1={{0.7,2.7},{40,60},{1.8,2.3,2.8}}; 
factorialxdsn =doeFactorial[factors1,levelsList1, 
"MyMetadata"->{"Description"->"This full factorial design was generated 
06-21-2020."}]; 
factorialxdsn[[1]] 
factorialxdsn[[2]]//TableForm 

DOE Toolkit	 Page 	28



example below, we use the DatasetOpts option to pass along some header options to the Dataset 
object: 

 

The headers of the Dataset object are rendered in bold font.  The background of the column of row 
numbers is light green and the background of the column names is cyan: 

  

Remember that whenever you specify a DOE Toolkit option, it must be double-quoted. 

Consult Appendix 2: Common Options for a complete list of all common DOE Toolkit options. 

  

factors1={"X1","X2","X3"}; 
levelsList1={{0.7,2.7},{40,60},{1.8,2.3,2.8}}; 
factorialxdsn =doeFactorial[factors1,levelsList1, 
"RandomizeRuns"->False, 
"DatasetOpts"->{HeaderBackground->{LightGreen,Cyan}, HeaderStyle->Bold}]; 
factorialxdsn[[1]] 

DOE Toolkit	 Page 	29



Box-Behnken Designs 

A Box-Behnken design is an independent quadratic design in that it does not contain an embedded 
factorial or fractional factorial design.  In this design the treatment combinations are at the midpoints 
of the edges of the process space and at the center. These designs are rotatable (or near rotatable) 
and require 3 levels of each factor.  The designs have limited capability for orthogonal blocking 
compared to central composite designs. 

The DOE Toolkit defines the doeBoxBehnken function for creating Box-Behnken designs. 

The doeBoxBehnken function is restricted to designs with at least 3 factors but no more than 7 
factors.  Each factor must have exactly 3 levels.  If your model has more than 7 factors, we 
recommend that you try a Central Composite design instead. 

The doeBoxBehnken function supports all the options that are described in Appendix 2: Common 
Options. 

There are no options unique to the doeBoxBehnken function.  

Consult the Doe toolkit user guide 2.0.nb notebook for an example of using the doeBoxBehnken 
function. 

DOE Toolkit	 Page 	30



Central Composite Designs 

A Central Composite Design (aka Box-Wilson Central Composite Design) contains an imbedded 
factorial or fractional factorial design with center points that is augmented with a group of so-called 
“star points” that allow estimation of curvature.  If the distance from the center of the design space to 
a factorial point is ±1 unit for each factor, then the distance (α) from the center of the design space to 
a star point is such that |α| > 1. The precise value of α depends on certain properties desired for the 
design and on the number of factors involved. 

The DOE Toolkit defines the doeCentralComposite function for creating central composite designs. 

There are 3 different “classic” forms of central composite design: Central Composite Circumscribed 
(CCC), Central Composite Inscribed (CCI), and Central Composite Face Centered (CCF).  You can 
construct any of the three classic forms using the doeCentralCompositefunction.  Historically, CCC 
and CCI designs require 5 levels of each factor.  Meanwhile, CCF designs require 3 levels of each 
factor.  However, the doeCentralComposite function does not enforce these restrictions so you can 
use 2-level, 4-level, etc. factors if so desired. 

You can set α to a specific number or to one of the keywords: {Orthogonal, Rotatable, 
Spherical}.  When α is set to one of the keywords {Orthogonal, Rotatable, Spherical} it is 
computed as follows: 

Let k=number of factors, F=number of runs in full factorial (or fractional factorial) part of the design, 
and n=number of central points. 

The doeCentralComposite function supports all the options that are described in Appendix 2: 
Common Options. .  In addition, the following options provided by the doeFractional function are 
supported: 

ConfoundingRules, 
UseInteractionTables, 
InteractionTable2x2, 
InteractionTable3x3, 
InteractionTable2x3 

Thus, to reduce the number of runs that would otherwise be required for a full factorial design, you 
can use the ConfoundingRules option to alias certain factors with others. 

Orthogonal α = (Q*F/4)^(1/4) 

where: 
T = 2*k + n 
Q = (Sqrt[F+T]-Sqrt[F])^2 

Rotatable α = F^(1/4) 

Spherical α = Sqrt[k] 

DOE Toolkit	 Page 	31



For more information about these options, see the documentation for the doeFractional function in 
Appendix 1: DOE Toolkit Function Summary.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the 
doeCentralComposite function. 

DOE Toolkit	 Page 	32



Full Factorial Designs 

A Full Factorial Design is one in which every setting of every factor appears with every setting of 
every other factor. 

The DOE Toolkit defines the doeFactorial function for creating full factorial designs. 

The doeFactorial function supports all the options that are described in Appendix 2: Common 
Options. 

There are no options unique to the doeFactorial function.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the doeFactorial 
function. 

DOE Toolkit	 Page 	33



Fractional Factorial Designs 

The ASQC (1983) Glossary & Tables for Statistical Quality Control defines a Fractional Factorial 
Design in the following way: "A factorial experiment in which only an adequately chosen fraction of the 
treatment combinations required for the complete factorial experiment is selected to be run." 

The DOE Toolkit defines the doeFractional function for creating fractional factorial designs.  

The doeFractional function allows you to reduce the number of runs your design would otherwise 
require by enabling you to confound (aka alias) some factors to other factors.  For example, suppose 
you have 3 factors named “X1”, “X2”, “X3”, each of which is a 3-level factor.  Ordinarily, a full factorial 
design would require 27 runs for such a model.  However, using doeFractional, you could confound 
X3 with X1 and X2, and thereby reduce the number of runs to 9.  To define the aliasing structure, you 
would use the ConfoundingRules option to specify the confounding rule {"X3"->{"X1","X2"}}. 

The doeFractional function supports all the options that are described in Appendix 2: Common 
Options.  In addition, the following options are supported: 

ConfoundingRules->conf, where conf is set to a list of confounding rules.  Each confounding rule 
has the form: ConfVar->{Var1,Var2,…,VarK} where ConfVar is the name of a factor and 
{Var1,Var2,…,VarK} are the names of the factors with which ConfVar is to be confounded.  If conf is 
the empty list then the doeFractional function computes the same design as the doeFactorial 
function. 

By default, when two factors interact and each factor has either 2 or 3 levels, one of the tables 
assigned to the options: InteractionTable2x2, InteractionTable2x3, or 
InteractionTable3x3 is used to compute the value of the interaction.  You can turn off this default 
behavior by setting the UseInteractionTables option to False.  If the 
UseInteractionTables option is False, then the product of the level values of the factors involved 
is used to represent the value of the interaction. 

UseInteractionTables->flag, where flag is either True or False. If flag is set to True, then one of 
the tables assigned to the options: InteractionTable2x2, InteractionTable2x3, or 
InteractionTable3x3 is used to compute the value of the interaction for two factors each of 
which has either 2 or 3 levels.  By default, flag is set to True. 

Consult the definition of the doeFractional function in Appendix 1: DOE Toolkit Function Summary for 
the default definitions of the interaction table options. 

The Resolution of a design describes the degree to which estimated main effects are aliased 
(confounded) with 2-level, 3-level, etc. interactions.  When you evaluate the doeFractional function 
to generate a design, the Resolution of your design is controlled by the list of confounding rules that is 
specified by the ConfoundingRules option. 

For example, if you want a 2III3-1 design, then the third factor in your design should be confounded 
with the first two: 

ConfoundingRules->{"X3"->{"X1","X2"}} 

Likewise, if you want a 2IV4-1 design, then the fourth factor in your design should be confounded with 
the first three: 

ConfoundingRules->{"X4"->{"X1","X2","X3"}} 

DOE Toolkit	 Page 	34



Meanwhile, if you have 8 factors a design with resolution 2IV3-3 is generated using the following 
confounding rules: 

ConfoundingRules->{"X6"->{"X1","X2","X3"},  
"X7"->{"X1","X2","X4"},"},  
"X8"->{"X2","X3","X4","X5"}} 

An excellent discussion of design Resolution can be found at the National Institute of Standards and 
Technology (aka NIST) website in their Engineering Statistics Handbook[4].  Cf. section 5.3.3.4.4. 

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the doeFractional 
function. 

DOE Toolkit	 Page 	35



Mixture Designs 

In a Mixture Design experiment, the independent factors are proportions of different components of a 
blend. 

The DOE Toolkit defines the doeMixture function for creating Mixture Designs. 

The doeMixture function supports only standard mixture designs at the present time.  Thus, the 
mixture components are subject to the constraint that they must sum to one.  So-called “constrained 
mixture designs” or “Extreme-Vertices” designs are not supported in this release. 

The doeMixture function supports most of the options that are described in Appendix 2: Common 
Options.  However, it does not support the following options: 
DataRepresentation, 
PatternRepresentation, 
CentralPoints, 
AxialPointGroups 

In addition, the following options are supported: 

MixtureType->mixtype, where mixtype is set one of the keywords in {SimplexLattice, 
SimplexCentroid}.  By default, mixtype is set to SimplexLattice.  

NumLevelsPerFactor->nlev, where nlev is either the keyword NumFactors or else an integer >= 
2. By default, nlev is set to NumFactors. 

PatternIsBarChart->flag, where flag is either True or False. If flag is set to True, then the Pattern 
column displays a bar chart for each row of the design to represent the pattern for that row of the 
design. Otherwise, the pattern for the row is displayed as a list of fractions. By default, flag is set to 
True.  This option is ignored if the PatternColumn option is set to False.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the doeMixture 
function. 

DOE Toolkit	 Page 	36



Orthogonal Designs 

In a balanced, Orthogonal Design, the vectors of level values for the independent factors are pair-
wise orthogonal and each level of each factor appears the same number of times in each factor. 

The DOE Toolkit defines the doeOrthogonal function for creating balanced, orthogonal designs.  The 
design that is generated is returned as part of an XDesign object.  Many of the designs that the 
doeOrthogonal function generates are identical to what are sometimes called Taguchi Arrays. 

The doeOrthogonal function is restricted to designs in which each factor is either 2-level or 3-level. 

The doeOrthogonal function supports all the options that are described in Appendix 2: Common 
Options. 

In addition, the following options are supported:  

MaxIterations->maxIter, where maxIter is an integer >= 1. By default, maxIter is set to 10.  If the 
doeOrthogonal function has failed to find an orthogonal design by the time maxIter iterations have 
been performed, the doeOrthogonal function will halt.  An iteration occurs for each attempt to find a 
mutually orthogonal set of factor vectors for a given run-length.  

PrintLog->flag, where flag is either True or False. If flag is set to True, then a log that describes the 
process that was followed to find the orthogonal design will be printed to your notebook. By default, 
flag is set to False. 

The doeOrthogonal function allows you to cancel the computation while it is in progress: If you are 
running the Windows or Linux operating system, hold down the CTRL (aka Control) key until you see 
a message in your notebook to the effect that the operation has been aborted.  If you are on a 
Macintosh, hold down the Option key.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the 
doeOrthogonal function. 

DOE Toolkit	 Page 	37



Optimal Designs 

Optimal Designs result from either maximizing or minimizing some optimality criterion relative to a 
subset of the runs in some pre-existing design. 

The DOE Toolkit defines the doeOptimal function for creating optimal designs. 

The doeOptimal function creates an optimal experimental design with the number of runs you 
specify, based on the XDesign object that you provide as input. The design that is generated is 
returned as part of an XDesign object. 

The doeOptimal function can create D-optimal, A-optimal, T-optimal, and G-optimal designs. 

Example of output produced while doeOptimal is running along with log information. 

 

DOE Toolkit	 Page 	38



The doeOptimal function supports all the options that are described in Appendix 2: Common 
Options.  In addition, the following options are supported: 

OptimalityCriterion->crit, where crit is set one of the keywords in {D, A, T, G}. By default, crit is 
set to D.  

Method->methd, where methd is set one of the keywords in {CoordinateExchange, 
RowExchange, Exhaustive}. By default, methd is set to RowExchange. 

NumIterations->nIter, where nIter is an integer >= 1. By default, nIter is set to 10.  This option is 
ignored if the Method option is set to Exhaustive. 

PrintLog->flag, where flag is either True or False. If flag is set to True, then a log that describes the 
process that was followed to find the optimal design will be printed to your notebook. By default, flag 
is set to False. 

StartingIndices->startInd, where startInd is a list containing nRuns distinct integers between 1 
and N, where N is the number of runs in the Dataset component of the XDesign object xdsnIn. By 
default, startInd is set to the empty list. 

ShowBestCandidates->flag, where flag is either True or False. If flag is set to True, then the list of 
best candidates discovered in the course of searching for an optimal design will be printed to your 
notebook. By default, flag is set to False.  

In order to use the doeOptimal function, you must first create an XDesign object, which you will 
provide as the first input parameter to the function.  You can either create the XDesign object 
manually, or you can use the XDesign object returned by some other DOE Toolkit function.  For 
example, you could use the XDesign object returned by the doeFactorial function as the xdsnIn input 
parameter to the doeOptimal function. 

If you use a DOE Toolkit function to create an XDesign object (call it xdsn) that will be used as input 
to the doeOptimal function, the DataRepresentation used by xdsn must be set to 
DataAreLevelListValues.  In other words, when a DOE Toolkit function such as doeFactorial is 
evaluated to generate xdsn, DataRepresentation->DataAreLevelListValues should be provided as 
an option to whatever DOE Toolkit function was used to generate xdsn. 

The doeOptimal function is different from the other functions that the DOE Toolkit provides.  The 
function is dynamic: it provides feedback to the user by displaying a progress indicator as well as a 
continually updated estimate of the time required for its search algorithm to complete. Because the 
search for an optimal design may take longer than desired, you can always terminate the operation 
by selecting the Abort Evaluation command from the Evaluation menu.  However, any results that 
the doeOptimal function may have obtained up to that point will be lost. To remedy this problem, the 

DOE Toolkit	 Page 	39



doeOptimal function provides another mechanism that allows you to cancel the computation while it 
is in progress: If you are running the Windows or Linux operating system, hold down the CTRL (aka 
Control) key until you see a message in your notebook to the effect that the operation has been 
aborted.  If you are on a Macintosh, hold down the Option key.  If you terminate the operation in this 
way, the doeOptimal function will display the best candidate it found (if any) prior to the time you 
terminated the operation.  In some cases, this may give you a design that is good enough for your 
purposes.  

If it is successful, the doeOptimal function will create an XDesign object that encapsulates an optimal 
design for the criterion you specified. 

Unless you use the StartingIndices option to specify a set of indices to define an initial design, 
the search for an optimal design begins with an initial design selected at random.  Due to the nature 
of the algorithm involved, it is possible that the search for a solution will only find a local optimum.  
You can specify the NumIterations option to run the doeOptimal function as many times as 
desired to increase the probability that the algorithm will find a “near-best” solution.  By default, the 
NumIterations option is set to 10. 

The doeOptimal function provides the Method option which allows you to choose the algorithm to 
follow in the search for an optimal candidate.  The choices for the Method option are: 

RowExchange, (the default) 
CoordinateExchange, 
Exhaustive 

The algorithm for the RowExchange method is based on Fedorov[2].  The algorithm for the 
CoordinateExchange method is based on Myer & Nachtsheim [1].  (See Appendix 5: References 
for more information.) 

Please note: The CoordinateExchange method presupposes that all the factors in the input 
Dataset are independent of each other (i.e., no factors are functions of other factors, no factors are 
interactions with or confounded with other factors).  If such dependencies exist, then you should only 
use the RowExchange method. 

The Exhaustive method will try every possible candidate with the number of runs you requested, so 
you probably won’t want to use this method unless the number of rows in your input Dataset is fairly 
small or you are willing to wait to obtain the result.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the doeOptimal 
function. 

DOE Toolkit	 Page 	40



Desirability Manipulator 

The DOE Toolkit provides the doeDesirability function which allows you to explore the desirability of 
a your single/multiple response model for alternative settings of the independent variables in the 
model. 

The doeDesirability function provides slider controls that allow you to adjust the values of the 
independent variables in your model.  Manipulating the sliders causes the desirability function for 
each response variable to be recomputed and its associated Fit Y by X plots to be redrawn.  This 
allows you to interactively explore the desirability of the multiple response model for a given set of 
factor settings. 

Let’s assume that you have used one of the DOE Toolkit functions to create an experimental design 
and that you have run your experiment and recorded the results.  In order to be able to use the 
doeDesirability function to analyze the desirability of the factor settings, you must first complete the 
following steps: 

(1) Define vectors for the observed effects in your model. These vectors are the observed values 
for the effect variables that were obtained by running your experiment. 

(2) Define vectors (derived from your design) for the factors in your model. 
(3) Create a fitted model for each of the effects in your model. 
(4) Define a list of the fitted models created in Step 3. 
(5) Define the effect-based desirability functions to be used for your model. 
(6) Set lower, target, upper values for the effects in your model. 
(7) Define factor-based desirability functions. 
(8) Define a list of the factor-based desirability functions created in Step 7. 

The Doe toolkit user guide 2.0.nb notebook provides an example in which these steps are followed 
in order to use the doeDesirability function to analyze a multiple response model based on the 
example described in Derringer and Suich[3].  (See Appendix 5: References for more information.) 

The screen capture below shows the doeDesirability function in use for the D&S model. 

DOE Toolkit	 Page 	41



 

DOE Toolkit	 Page 	42



Augmenting a Design 

You can always add central points, axial points, replicates, randomization, and blocks to a design 
using the doeAugment function.  If there is a blocking factor in the design, then each block will 
receive the number of central at the locations specified by the CentralPoints option.  Likewise, if 
there is a blocking factor in the design, then each block will receive the number of axial point groups 
at the locations specified by the AxialPointGroups option.  

When you evaluate the doeAugment function and specify one or more options, you provide an 
XDesign object as input and the function returns an XDesign object with the modifications you 
requested.  Thus, the doeAugment function does not actually modify or in any other way change 
the XDesign object that you supply as input.  Instead, it creates a new XDesign object based on your 
input.  Although our descriptions in this document may sometimes suggest that the doeAugment 
function is modifying the input Dataset object, it is important to keep in mind that strictly speaking, 
this is not the case. 

The doeAugment function supports the following subset of common options: 

CentralPoints, 
AxialPointGroups,  
AxialPointsAboveCentralPoints, 
RandomizeRuns, 
Blocking, 
BlocksAreRows, 
BlockColors, 
NumReplicates, 
MyMetadata, 
RandomNumberSeed, 
DatasetOpts 

For more information about these options, see Appendix 2: Common Options.  

Consult the Doe toolkit user guide 2.0.nb notebook for some examples of using the doeAugment 
function with these options. 

DOE Toolkit	 Page 	43



Creating Taguchi Designs 

Many of the experimental designs that have been variously called Taguchi Designs or Orthogonal 
Arrays are actually fractional factorial designs.  Those Taguchi designs which are fractional factorial in 
nature can be created using the doeFractional function. 

Taguchi designs for models in which all the factors have 2 levels are usually named using the 
construction: “Ln” where the letter “n” is replaced with some number (n is the number of runs in the 
design).  For example, “L4” refers to a Taguchi design with 4 runs.  Unfortunately, this naming 
convention is somewhat misleading; there can be more than one “Ln” design for a given number n.  
For example, there is an L8 design for 4 factors and there is also an L8 design for 5 factors.  Although 
8 runs are involved in each case, these two “L8” designs are not the same.  Some Taguchi designs are 
actually full factorial; for example, L4 and L8 designs exist for a model with 3 factors.  But in this case, 
the L8 design is actually a full factorial design (which can be created using the doeFactorial function). 

In most cases, there is more than one Taguchi design that can be chosen for a given number of 
factors.  For example, in the case of a 5 factor model, one can choose from Taguchi designs L8, L12, 
and L16.  Some Taguchi designs such as L12, are not, strictly speaking, fractional factorial designs and 
so cannot be produced using the doeFractional function.  Those Taguchi designs which are not 
fractional factorials can be produced using the doeOrthogonal function. 

The Doe toolkit user guide 2.0.nb notebook contains examples of how to produce Taguchi designs 
using the doeFractional function for models with up to 6 factors each of which is 2-level. 

The doeFractional function can also be used to create most of the Taguchi designs for models in 
which all the factors are 3-level and for models in which some factors are 2-level while others are 3-
level. 

DOE Toolkit	 Page 	44



Obtaining Version Information 

To display the version of the DOE Toolkit that is loaded in your notebook, evaluate the 
doeToolkitVersion[] function like so: 

 
doeToolkitVersion[]

DOE Toolkit	 Page 	45



Reporting a Problem 

To report a problem with the DOE Toolkit, send email to Harper Corditt Software at the following 
address: 

support@harpercorditt.com 

Be sure to include a description of your problem and please provide a Mathematica notebook that 
can be used to reproduce the problem.  You can either attach the notebook to your email or else 
provide a link to the notebook in the Wolfram Cloud. 

Please include your telephone number in case we need to contact you for further information. 

Last but not least, please include your Mathematica license in the text of your email.  To obtain your 
Mathematica license, follow these steps: 

Step 1: Evaluate the following expression in your notebook: 

 

This should produce output similar to what you see below: 

 

Step 2: Select the string that is output and from the Edit menu, select the Copy As command, and 
from the Copy As submenu, select Plain Text. 

Step 3: Paste the Mathematica license string into your email. 

$LicenseID 

DOE Toolkit	 Page 	46

mailto:support@harpercorditt.com


Getting Help 

To obtain information about a particular DOE Toolkit function, click in your notebook to start a new 
Input cell.  Then enter the “?” character followed by the name of the function and press the Enter key.  
For example, to obtain information about the doeFactorial function you would enter the following: 

 

The following description is printed to your notebook: 

 

It may happen that rather than seeing a description such as the one shown above, you see 
something like this instead: 

 

When you see this message, there are two possible reasons why Mathematica considers the symbol 
in question to be Missing.  First of all, it may be that you misspelled the name of the function, so be 
sure to check your typing.  If you are sure that the name is not misspelled, then it is most likely the 
case that the DOE Toolkit is not loaded.  Try evaluating the Get function, providing the path to the 
DOE Toolkit.wl file as input to the Get function.  (See the Loading the DOE Toolkit in Your Notebook 
section for more information.)  Verify that there are no errors when evaluating the Get function for the 
DOE Toolkit.wl file. 

To obtain a list of all the options supported by a particular DOE Toolkit function, evaluate the 
Mathematica Options function, providing the name of the DOE Toolkit function as the input 
parameter to the Options function.  For example, to see the list of options supported by the 
doeFactorial function you would enter the following: 

 

The following list is printed to your notebook: 

 

?doeFactorial

Options[doeFactorial]

DOE Toolkit	 Page 	47



To obtain information about an option that is common to all DOE Toolkit functions, you enter the “?” 
character followed by the name of the option, followed by the Enter key.  For example, to obtain 
information about the RandomizeRuns option, you would enter the following: 

  

The following description is printed to your notebook: 

 

To obtain information about an option that is specific to a particular DOE Toolkit function, you must 
qualify the option with the name of the function to which it belongs.  To do this, you enter the “?” 
character followed by the name of the function, followed by the back single quote character, followed 
by the name of the option, followed by the Enter key.  For example, to obtain information about the 
ConfoundingRules option which is supported by the doeFractional function, you would enter the 
following: 

 

The following description is printed to your notebook: 

 

Note that if you forget to qualify the option using the “name of function followed by back single quote” 
construction, you will probably see a message like the following: 

 

When that happens, try qualifying the option with the name of the function. 

Last but not least, you can always refer to Appendix 1: DOE Toolkit Function Summary of this 
document to obtain information about any DOE Toolkit function and its associated options. 

?RandomizeRuns

?doeFractional`ConfoundingRules

DOE Toolkit	 Page 	48



Appendix 1: DOE Toolkit Function Summary 

Function:       doeAugment 

Usage: 
xdsn = doeAugment[xdsnIn] augments the design encapsulated by the Dataset object xdsnIn[[1]]. 
The function returns xdsn, a 2-part list. xdsn[[1]] is a Dataset object that encapsulates the augmented 
design. xdsn[[2]] is a list of metadata that contains the original metadata from xdsnIn[[2]] along with a 
record of the modifications that were made to augment the design. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeAugment: 
(None) 

Example: (*add central points to the design in xdsn*) 
xdsnAugmented = doeAugment[xdsn, 
"CentralPoints"->{"Top"->1,"Bottom"->1}]; 

DOE Toolkit	 Page 	49



Function:       doeBoxBehnken 

Usage: 
xdsn = doeBoxBehnken[factorList,levelLists] generates a Box-Behnken experimental design for the 
factors in factorList.  The list of levels for each factor J are specified by levelLists[[J]]. The function 
returns xdsn, a 2-part list. xdsn[[1]] is a Dataset object that encapsulates the generated runs. xdsn[[2]] 
contains metadata. 

doeBoxBehnken supports designs with at least 3 factors but no more than 7 factors.  Each factor 
must have exactly three levels. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeBoxBehnken: 
(None) 

Example: 
factors1={"X1","X2","X3"}; 
levels1={{0.7,1.7,2.7},{40,60,80},{1.8,2.3,2.8}}; 
boxbxdsn=doeBoxBehnken[factors1,levels1] 

DOE Toolkit	 Page 	50



Function:       doeCentralComposite 

Usage:  
xdsn = doeCentralComposite[factorList,levelLists] generates a central composite experimental 
design for the factors in factorList. The list of levels for each factor J are specified by levelLists[[J]]. 
The function returns xdsn, a 2-part list. xdsn[[1]] is a Dataset object that encapsulates the generated 
runs. xdsn[[2]] contains metadata. 

Whenever the doeCentralComposite function is evaluated, the AxialPointGroups option is set 
by default to: 
AxialPointGroups->{Rotatable, {Bottom->1}}. 
In other words, if you don’t specify the AxialPointGroups option at all, then 
AxialPointGroups ->{Rotatable, {Bottom->1}} is assumed. 

Since axial points are always inserted as a group (2 rows are added to the design for each factor), the 
number you specify as the RHS of an insertion rule in the AxialPointGroups option is the 
number of groups to be inserted.  Thus, the default setting will insert one group of axial points (i.e., 2k 
rows, where k is the number of factors) at the bottom of the design. 

In addition, the CentralPoints option is set by default to: 
CentralPoints->{Bottom->NPerFactor->2}. 

This function supports all the options that are described in Appendix 2: Common Options.  All of the 
options that are supported by the doeFractional function are also available in the 
doeCentralComposite function.  Thus, you can use the ConfoundingRules option to confound 
some of the factors in the design, thereby reducing the number of runs that would otherwise be 
required. 

Options Unique to doeCentralComposite:  
(None) 

Example: 
factors1={"X1","X2","X3"}; 
levels1={{0.7,1.7},{40,60},{1.8,2.8}}; 
cencompxdsn = doeCentralComposite[factors1,levels1, 
"AxialPointGroups"->{"Spherical", 
{"Top"->1}}] 

DOE Toolkit	 Page 	51



Function:       doeDesirability 

Usage: 
doeDesirability[fittedModelList, desireFcnList, xVars, xVarNames, yVars, yVarNames] creates a grid 
of dynamic model fit plots based on the FittedModel objects and desirability functions provided by 
fittedModelList and desireFcnList. It is assumed that for each i, fittedModelList[[i]] is the FittedModel 
object returned by Mathematica's LinearModelFit or NonlinearModelFit function using the values of 
the response variable given by yVars[[i]] and the values of the independent variables in xVars, where 
xVars[[j]] gives the values for the j-th independent variable. 

Options Unique to doeDesirability:  
MinMaxForXVars->xMinMax, where xMinMax is a list such that xMinMax[[j]] is a list containing the 
min and max values to be used for the j-th independent variable when fitting each response variable.  
By default, xMinMax is set to the empty list.  When xMinMax is set to the empty list, the min and max 
values used for each independent variable are derived from the xVars list. 

FitYByXPlotColor->clr, where clr is an RGBColor.  This option allows you to control the color of 
the curves in the FitYByX plots displayed in the grid.  By default, clr is set to Blue. 

Example: 
doeDesirability[fittedModelList,desireFcnListDS,xVars, 
xVarNames,yVars,yVarNames] 

DOE Toolkit	 Page 	52



Function:       doeFactorial 

Usage: 
xdsn = doeFactorial[factorList,levelLists] generates a full factorial experimental design for the factors 
in factorList. The list of levels for each factor J are specified by levelLists[[J]]. The function returns 
xdsn, a 2-part list. xdsn[[1]] is a Dataset object that encapsulates the generated runs. xdsn[[2]] 
contains metadata. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeFactorial: 
(None) 

Example: 
factors1={"X1","X2","X3"}; 
levels1={{0.7,1.9},{40,50,60,70},{1.8,2.3,2.8}}; 
fullfactxdsn = doeFactorial[factors1,levels1] 

DOE Toolkit	 Page 	53



Function:       doeFractional 

Usage: 
xdsn = doeFractional[factorList,levelLists] generates a fractional factorial experimental design for 
the factors in factorList by confounding factors using the rules specified by the ConfoundingRules 
option. The list of levels for each factor J are specified by levelLists[[J]]. The function returns xdsn, a 
2-part list. xdsn[[1]] is a Dataset object that encapsulates the generated runs. xdsn[[2]] contains 
metadata. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Shared by doeFractional and doeCentralComposite:  
ConfoundingRules->conf, where conf is set to a list of confounding rules.  Each confounding rule 
has the form: ConfVar->{Var1,Var2,…,VarK} where ConfVar is the name of a factor and 
{Var1,Var2,…,VarK} are the names of the factors with which ConfVar is to be confounded.  If conf is 
the empty list then the doeFractional function computes the same design as the doeFactorial 
function. 

UseInteractionTables->flag, where flag is either True or False. If flag is set to True, then level 
multiplication tables are used to compute the products of interactions for 2x2-, 2x3-, and 3x3- level 
factor interactions.  By default, flag is set to True.  If flag is set to False, then level lists for confounded 
factors are ignored when computing the products of interactions.  Instead, the value of a confounded 
factor in a given run is computed by forming the product of the level values in that run of its interacting 
factors. 

InteractionTable2x2->levmtab, where levmtab is a list of rules that defines the result when level 
Li of factor F1 and level Lj of factor F2 (where both factors have two levels) are multiplied due to 
factor interaction.  By default, this option is set as follows: 

InteractionTable2x2-> 
{ 

{1,1}->1, 
{1,2}->1, 
{2,1}->2, 
{2,2}->2 

} 

InteractionTable2x3->levmtab, where levmtab is a list of rules that defines the result when level 
Li of factor F1 and level Lj of factor F2 (where the first factor has two levels and the second factor has 
3 levels) are multiplied due to factor interaction.  By default, this option is set as follows: 

InteractionTable2x3-> 
{ 

{1,1}->1, 
{1,2}->2, 
{1,3}->3, 
{2,1}->2, 
{2,2}->3, 
{2,3}->1 

} 
When the first factor has 3 levels and the second has 2, the LHS of each rule in the 
InteractionTable2x3 is reversed.  Thus, if the default InteractionTable2x3 is being used, 
then the following table is applied: 

{ 
{1,1}->1, 
{2,1}->2, 
{3,1}->3, 
{1,2}->2, 

DOE Toolkit	 Page 	54



{2,2}->3, 
{3,2}->1 

} 

InteractionTable3x3-> levmtab, where levmtab is a list of rules that defines the result when level 
Li of factor F1 and level Lj of factor F2 (where both factors have three levels) are multiplied due to 
factor interaction.  By default, this option is set as follows:  

InteractionTable3x3-> 
{ 

{1,1}->1, 
{1,2}->1, 
{1,3}->2, 
{2,1}->1, 
{2,2}->2, 
{2,3}->3, 
{3,1}->2, 
{3,2}->3, 
{3,3}->3 

} 

Example: 
factors1={"X1","X2","X3","X4"}; 
levels1={{0.7,1.9},{40,50},{1.8,2.8},{0.5,1.5}}; 
confRules1={"X4"->{"X1","X3"}}; 
fractfactxdsn = doeFractional[factors1,levels1, 
"ConfoundingRules"->confRules1] 

DOE Toolkit	 Page 	55



Function:       doeMixture 

Usage:  
xdsn = doeMixture[factorList] generates a mixture experimental design for the factors in factorList. 
The function returns xdsn, a 2-part list. xdsn[[1]] is a Dataset object that encapsulates the generated 
runs. xdsn[[2]] contains metadata. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeMixture: 
MixtureType->mixtype, where mixtype is set one of the keywords in {SimplexLattice, 
SimplexCentroid}.  By default, mixtype is set to SimplexLattice.  

NumLevelsPerFactor->nlev, where nlev is either the keyword NumFactors (i.e., 
Length[factorList]) or else an integer >= 2.  By default, nlev is set to NumFactors. 

PatternIsBarChart->flag, where flag is either True or False. If flag is set to True, then the Pattern 
column displays a bar chart for each row of the design to represent the pattern for that row of the 
design. Otherwise, the pattern for the row is a list of fractions. By default, flag is set to True.  This 
option is ignored if the PatternColumn option is set to False. 

Example: 
factors1={"X1","X2","X3","X4"}; 
mixtxdsn = doeMixture[factors1] 

DOE Toolkit	 Page 	56



Function:       doeOptimal 

Usage:  
xdsn = doeOptimal[xdsnIn,nRuns] generates an optimal experimental design with nRuns runs 
based on the XDesign object xdsnIn.  It is assumed that the Dataset component of xdsnIn contains 
main effects only (no computed variables, no interactions). The function returns xdsn, a 2-part list.  
xdsn[[1]] is a Dataset object that encapsulates the generated runs.  xdsn[[2]] contains metadata.  

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeOptimal: 
OptimalityCriterion->crit, where crit is set one of the keywords in {D,A,T,G}. By default, crit 
is set to D.  

Method->methd, where methd is set one of the keywords in {CoordinateExchange, 
RowExchange, Exhaustive}. By default, methd is set to RowExchange. 

NumIterations->nIter, where nIter is an integer >= 1. By default, nIter is set to 10.  This option is 
ignored if the Method option is set to Exhaustive. 

PrintLog->flag, where flag is either True or False. If flag is set to True, then a log that describes the 
process that was followed to find the optimal design will be printed to your notebook. By default, flag 
is set to False. 

StartingIndices->startInd, where startInd is a list containing nRuns distinct integers between 1 
and N, where N is the number of runs in the Dataset component of the XDesign object xdsnIn. By 
default, startInd is set to the empty list. 

ShowBestCandidates->flag, where flag is either True or False. If flag is set to True, then the list of 
best candidates discovered in the course of searching for an optimal design will be printed to your 
notebook. By default, flag is set to False.  

Example: 
(*Evaluate the doeFactorial function to create a full 
factorial design which will be used as input to the doeOptimal 
function*) 
factors1={"X1","X2","X3","X4"}; 
levels1={{0.7,1.7},{40,60},{1.8,2.8},{100,150}}; 
fullfactxdsn =doeFactorial[factors1,levels1, 
"PatternColumn"->False, 
"RandomizeRuns"->False]; 

(*Evaluate the doeOptimal function to create D-Optimal design 
based on fullfactxdsn *) 

DOE Toolkit	 Page 	57



nRuns1=10; 
optimal10rxdsn = doeOptimal[fullfactxdsn,nRuns1, 
“OptimalityCriterion"->"D"] 

DOE Toolkit	 Page 	58



Function:       doeOrthogonal 

Usage:  
xdsn = doeOrthogonal[factorList,levelLists] generates a balanced, orthogonal experimental design 
for the factors in factorList. The list of levels for each factor J are specified by levelLists[[J]].  The 
function returns xdsn, a 2-part list.  xdsn[[1]] is a Dataset object that encapsulates the generated runs. 
xdsn[[2]] contains metadata. 

Each factor must have either 2 or 3 levels. 

This function supports all the options that are described in Appendix 2: Common Options. 

Options Unique to doeOrthogonal:  
MaxIterations->maxIter, where maxIter is an integer >= 1. By default, maxIter is set to 10.  If the 
doeOrthogonal function has failed to find an orthogonal design by the time maxIter iterations have 
been performed, the doeOrthogonal function will halt.  An iteration occurs for each attempt to find a 
mutually orthogonal set of factor vectors for a given run-length. 

PrintLog->flag, where flag is either True or False. If flag is set to True, then a log that describes the 
process that was followed to find the orthogonal design will be printed to your notebook. By default, 
flag is set to False. 

Example: 
factors1={"X1","X2","X3","X4"}; 
levels1={{0.7,1.9},{40,50},{1.8,2.8},{0.5,1.5}}; 
orthogxdsn = doeOrthogonal[factors1,levels1] 

DOE Toolkit	 Page 	59



Function:       doeToolkitVersion 

Usage: 
doeToolkitVersion[] displays the version of the DOE Toolkit that is loaded in your notebook. 

Options 
(None) 

Example: 
doeToolkitVersion[] 

DOE Toolkit	 Page 	60



Appendix 2: Common Options for DOE Toolkit Functions 

With a few exceptions (as noted), the following options are supported by every function in the DOE 
Toolkit: 

DataRepresentation->rep, where rep is either a keyword from {DataAreLevelListValues, 
DataAreLevelListIndices} or a list H of symbol-lists.  You use this option to control the way the 
data is displayed in the design.  By default, rep is set to DataAreLevelListValues.  
Example: DataRepresentation->{{"α","β"},{"ª","©","§"} 

PatternRepresentation->rep, where rep is a keyword from 
{PatternsAreLevelListIndices, PatternsAreMinusZeroPlus} or a list H of symbol-lists.  
You use this option to control the way the Pattern column is displayed in the design.  By default, rep is 
set to PatternsAreLevelListIndices.  If rep is set to PatternsAreMinusZeroPlus and 
some factor has only 1 level, the level is represented by the  character in the pattern. If some 
factor has more than 3 levels, then its levels are represented by indices in the pattern.  If rep is set to 
a list H, then the same rules apply to H as described above for the DataRepresentation option.  
This option is ignored if the PatternColumn option is set to False. 
Example: PatternRepresentation->{{Red,Green},{Orange,Blue,Purple}} 

RandomizeRuns->flag, where flag is either True or False. If flag is set to True, then the runs in the 
design are randomly ordered.  By default, flag is set to True.  If the Blocking option is specified and 
the BlocksAreRows option is set to True, then the runs within each block are randomly ordered. 

NumReplicates->nr, where nr is a non-negative integer. You use this option to control the number of 
times each run is replicated in the design. By default, nr is set to 0. 

CentralPoints->cp, where cp is a list of rules. You use this option to control the number and 
locations of center points that are included in the design.  Each member of cp is a rule; the LHS of the 
rule indicates the insertion location.  The LHS of the rule can be one of the keywords {Top, 
Bottom, Middle} or else a positive integer (indicating a row number).  The RHS of the rule 
indicates the number of central points to insert at the insertion location and is either a positive integer 
or a rule of the form: NPerFactor->k, where k is a positive integer.  By default, cp is set to the empty 
list. 
Example: CentralPoints->{Top->NPerFactor->1} 

AxialPointGroups->ap, where ap is a list of the form: {α, aprules}.  You use this option to control 
the number and locations of axial points that are included in the design.  α is either a number > 1 or 
one of the keywords in {Rotatable, Orthogonal, Spherical}.  aprules is a list of rules.  For 
each rule in aprules, the LHS of the rule indicates the insertion location.  The LHS of the rule can be 
one of the keywords {Top, Bottom, Middle} or else a positive integer (indicating a row 
number).  The RHS of the rule indicates the number of axial point groups to be inserted (each group 
consists of 2k rows, where k is the number of factors) to insert at the insertion location and is a 
positive integer.  By default, ap is set to the empty list. 
Example: AxialPointGroups->{Spherical,{Bottom->1}} 

AxialPointsAboveCentralPoints-> flag, where flag is either True or False.  If flag is set to true, 
then when both axial point groups and central points are added to the design, the axial points are 
inserted above the central points.  By default, this option is set to True.  This option is ignored if the 
CentralPoints and AxialPointGroups options are both set to the empty list. 

Blocking->blk, where blk.is set to a list of rules of the form:  
BFactor->BLevelList.  In each rule, BFactor is the name to be assigned to the blocking factor and 
BLevelList is the list of levels associated with BFactor.  By default, blk is set to the empty list (i.e., no 
blocking is included in the design).  

DOE Toolkit	 Page 	61



Example: Blocking->{"Plot"->{1,2}} 

BlocksAreRows->flag, where flag is either True or False. If flag is set to True, then the runs within 
each block are provided as rows in the Dataset.  Otherwise, blocks are provided as columns, one for 
each combination of factor levels.  By default, this option is set to True. This option is ignored if the 
Blocking option is set to the empty list. 

BlockColors->{c1,c2}, where c1 and c2 are colors.  The colors c1 and c2 are used to alternately 
color the blocks in the design. By default, this option is set to {LightBlue, White}. This option is 
ignored if the Blocking option is set to the empty list or if the BlocksAreRows option is set to 
False. 

PatternColumn->flag, where flag is either True or False. If flag is set to True, then a column named 
“Pattern” is included in the Dataset component of the 2-part list returned by the DOE Toolkit function. 
The “Pattern” column contains expressions that represent the levels of each factor that are present in 
the generated runs.  A pattern for a given run is either a string composed of symbols from the list {-, +, 
0} or a list of level indices. By default, flag is set to True. 

MyMetadata->mdata, where mdata is set to a list of rules supplied by the user. If mdata is set to a 
non-empty list, mdata will be included in the metadata component of the 2-part list returned by the 
DOE Toolkit.  By default, mdata is set to the empty list.  
Example: MyMetadata->{Description->"Generated " 
               <>DateString[{"Month","/","Day","/","Year"}]} 

RowNumbers->flag, where flag is either True or False. If flag is set to True, then the runs are 
numbered in the Dataset component of the 2-part list returned by the DOE Toolkit function.  By 
default, flag is set to True. 

RandomNumberSeed->rSeed, where rSeed is either the keyword BasedOnCurrentTime or else an 
integer or a string. By default, rSeed is set to BasedOnCurrentTime. When the RandomizeRuns 
option is set to True, the RandomNumberSeed option allows you to control whether the randomization 
performed in creating a design is repeatable. If you evaluate a particular DOE Toolkit function 
repeatedly with the RandomNumberSeed option set to the same value of rSeed each time (where 
rSeed is set to some fixed integer or string), then the same random ordering of the generated runs 
will be produced each time.  If you don’t explicitly set the RandomNumberSeed option (in which case, 
it will be set to its default value of BasedOnCurrentTime), then each time you evaluate a particular 
DOE Toolkit function, a different random ordering of the generated runs will be produced.  

DatasetOpts->dsopts, where dsopts is set to a list of Dataset options.  The options in dsopts will be 
applied to the Dataset component returned by the DOE Toolkit function.  By default, dsopts is set to 
the empty list. 
Example: DatasetOpts->{HeaderBackground->{LightGreen,Cyan}, 
               HeaderStyle->Bold} 

Whenever you specify a DOE Toolkit option, it must be double-quoted. 

DOE Toolkit	 Page 	62



Appendix 3: Editing a Dataset 
When it comes to Mathematica, there will almost always be more than one way to accomplish 
whatever it is you are trying to do.  In many cases, there will be several ways to achieve a desired 
result.  In the examples that follow, we show how to perform the most basic row and column 
operations on a Dataset object.  We do not claim that the methods we use are the best or the most 
efficient in any sense.  We believe that the methods we use are fairly clear and should be easy to 
adapt to suit your needs. 

Row Operations 

Suppose we create a full factorial design using the doeFactorial function: 

 

Let’s set the local variable ds1 to the first component of the XDesign returned by the doeFactorial 
function: 

 

The following examples all use ds1 as shown below: 

 

Example 1: Append a row to ds1. 

 

The following is printed to your notebook: 

 

fullfactxdsn=doeFactorial[{"X1","X2","X3"}, 
{{0.7,1.7},{40,60},{1.8,2.8}},"RandomizeRuns"->False]; 

ds1 = fullfactxdsn[[1]]

(*define a new row of data as an Association*) 
newrow=Association[{"Pattern"->"","X1"->1.8,"X2"->55,"X3"->2.9}] 

DOE Toolkit	 Page 	63



 

 

 

 

 

(*append the rule: "mykey"->newrow to ds1. Note how we use the Key: 
"mykey" as the LHS of the rule.  Any key would do, so long as it is not 
currently a key in use in ds1.*) 
ds1new=Append[ds1,"mykey"->newrow] 

(*Fix row numbering. This wipes out all current "row number" keys 
and renumbers them as 1..N.*) 
ds1new =Dataset[AssociationThread[Table[i,{i,1,Length[ds1new]}], 

(*define a helper function to fix row numbering in the following 
examples*) 
fixRowNumbering[dsIn_]:= 

DOE Toolkit	 Page 	64



Example 2: Insert a row into the position currently occupied by row 6 in ds1. 

 

 

Example 3: Delete row 3 in ds1. 

 

 

(*insert the rule: "mykey"->newrow into ds1.  We use "mykey" for the key 
in the LHS of the rule, which we know is not currently in use in ds1. 
We specify the insertion location as Key[6]. 
Call our helper function to fix row numbering.*) 
ds1new=Insert[ds1," mykey"->newrow,Key[6]]; 
ds1new=fixRowNumbering[ds1new]

ds1new = Dataset[KeyDrop[Normal[ds1],3]]; 
ds1new=fixRowNumbering[ds1new]

DOE Toolkit	 Page 	65



Example 4: Replace row 3 in ds1 with a different row of values. 

 

 

Example 5: Modify row 3 in ds1 by changing the value of X1 to 6.4. 

 

 

ds1assoc=Normal[ds1]; 
ds1assoc[3]=newrow; (*re-use newrow created for example 1*) 
ds1new=Dataset[ds1assoc] 

ds1assoc = Normal[ds1]; 
row3=ds1assoc[3]; 
row3["X1"]=6.4; 
ds1assoc[3]=row3; 
ds1new=Dataset[ds1assoc] 

DOE Toolkit	 Page 	66



Example 6: Move row 7 in ds1 so that it becomes the 4th row. 

 

 
Example 7: Swap rows 2 and 7 in ds1. 

 

 

ds1assoc = Normal[ds1]; 
row7=ds1assoc[7]; 
ds1assoc = KeyDrop[ds1assoc,7]; 
(*Insert the rule: "mykey"->row7 into ds1. 
Specify insertion location as Key[4]. 
Fix row numbering.*) 
ds1assoc = Insert[ds1assoc,"mykey"->row7,Key[4]]; 
ds1new=fixRowNumbering[ds1assoc] 

ds1assoc = Normal[ds1]; 
row2=ds1assoc[2]; 
ds1assoc[2]=ds1assoc[7]; 
ds1assoc[7]=row2; 
d1new = Dataset[ds1assoc] 

DOE Toolkit	 Page 	67



Column Operations 
The “power tools” we recommend you use to perform column-oriented operations are the Map and 
MapIndexed functions. 

In the following examples, we use the Map (or MapIndexed) function to perform column operations 
on our Dataset object ds1.  We provide what is known as a pure (aka anonymous) function – call it E 
– to the Map (or MapIndexed) function, and it applies E to each member of the list to which Map (or 
MapIndexed) is being applied.  

If you unfamiliar with pure functions and would like to learn more about them, we suggest you take 
a look at: https://reference.wolfram.com/language/ref/Function.html 

Example 1: Use the Map function to add a column "A" of zeroes to ds1. 

 

 

When you use the MapIndexed function, one of the input parameters to our pure function E is the 
index of the row to which E is being applied.  We obtain the index via the "#2" part specification 
which is provided by MapIndexed.  (MapIndexed also provides a "#1" part specification, which 
essentially picks out the members of the list to which MapIndexed is being applied.) 

If you are unfamiliar with the MapIndexed function, consult: https://reference.wolfram.com/
language/ref/MapIndexed.html 

When you apply MapIndexed to an Association (which is the case in this situation, since the Dataset 
object ds1 is an Association), #2 picks out the list: {Key[i]}.  Meanwhile, First[#2] picks out 
the expression: Key[i].  And finally, First[First[#2]] gives you a numeric index i.  Typically, i is 
the index we are after.  That is why in the examples below, we use First[First[#2]] to get index 
i.  

ds1new=Map[Append[#,"A"->0]&,ds1]

DOE Toolkit	 Page 	68

https://reference.wolfram.com/language/ref/Function.html
https://reference.wolfram.com/language/ref/MapIndexed.html
https://reference.wolfram.com/language/ref/MapIndexed.html


Example 2: Use the MapIndexed function to add a column "A" to ds1 where the value for row i in 
column A is the row's index.  Note how we have used the expression First[First[#2]] as 
described above to get the row's index. 

 

 

Example 3: Add a column "A" to ds1 where the value for row i in column A is derived from a given 
vector of values: colAvalues1. 

 

 

ds1new=MapIndexed[Append[#1,"A"->First[First[#2]]]&,ds1]

colAvalues1={101,241,564,111,789,432,905,838}; 
ds1new=MapIndexed[Append[#1,"A"->colAvalues1[[First[First[#2]]]]]&,ds1] 

DOE Toolkit	 Page 	69



Example 4: Add a column "A" to ds1 where the value for row i in column A is the sum of the values 
in row i of columns X1 and X2. 

 

 
Example 5: Insert a column named "Intercept" (whose value is always 1) before column "X1" in ds1. 
(The Key["X1"] clause indicates that the insertion should be made before column X1.) 

 

 

ds1new=Dataset[Map[Append[#,"A"->#["X1"]+#["X2"]]&,ds1]]

ds1new=Map[Insert[#1,"Intercept"->1,Key["X1"]]&,ds1]

DOE Toolkit	 Page 	70



Example 6: Delete a column in ds1 by key (in this example, we delete column 1, the "Pattern" 
column). 

 

 

Example 7: Delete a column in ds1 by name (in this example, we delete column "X2"). 

 

 

ds1new=Map[Delete[#,1]&,ds1]

ds1new=Dataset[Map[KeyDrop[#,"X2"]&,ds1]]

DOE Toolkit	 Page 	71



Example 8: Modify/Replace an existing column.  In this example, we modify column X2 (whose key is 
3) by replacing its values with their square roots. 

 

 

Example 9: Move a column.  In this example, we "move" column X2 by making a back-up, deleting it 
in its current location, and then inserting it in its new location (before the "Pattern" column). 

 

 

ds1new=Dataset[Map[ReplacePart[#,3->Sqrt[#["X2"]]]&,ds1]]

colX2 = ds1[All,"X2"] 
ds1new1=Dataset[Map[KeyDrop[#,"X2"]&,ds1]] 
ds1new2=MapIndexed[Insert[#1,"X2"->colX2[[First[First[#2]]]], 
Key["Pattern"]]&,ds1new1]

DOE Toolkit	 Page 	72



Last but not least, if you prefer to work with lists rather than associations, you can always extract just 
the data from the Dataset object, free from all the nested associations, as follows: 

 

The following output is produced: 

 

dataOnly=Map[Values,Normal[Values[ds1]]]

DOE Toolkit	 Page 	73



Appendix 4: Suggested Resources 
The DOE Toolkit assumes that you are already familiar with the process of designing an experiment 
and analyzing its results.  If this is not the case, there are many excellent books and websites which 
can help you get started with designing your experiments. 

Books: 

A very gentle introduction to DOE: Gunter, B.; Coleman, D. (2014) A DOE Handbook: A Simple 
Approach to Basic Statistical Design of Experiments. 

A classic in the field: Box, George, E.P.; Hunter, William G.; Hunter, J. Stuart (2005).Statistics for 
Experimenters: Design, Innovation, and Discovery (2nd ed). 

A very accessible book for the general audience: Cox, D.R. & Reid, N. (2000), The Theory of the 
Design of Experiments. 

Websites: 

The National Institute of Standards and Technology (aka NIST) has created a marvelous website 
which provides an Engineering Statistics Handbook.  Chapter 5 (Improve) of the handbook contains 
a wealth of information about the different types of experimental designs.  It goes into considerable 
detail, describing the different types of experimental designs, the purposes they serve, and their 
strengths and limitations: 

https://www.itl.nist.gov/div898/handbook/pri/pri.htm 

The Eberly College of Science at PennState has an online course that provides an introduction to 
design of experiments.  Although the examples it provides are usually created using Minitab, you 
don’t have to be a Minitab user in order to follow the discussion and gain a lot of useful information. 

https://online.stat.psu.edu/stat503/ 

SAS provides a very useful online technical note: Experimental Design: Efficiency, Coding, and Choice 
Designs.  Once again, although the coded examples in the note are written in the SAS programming 
language, the discussion of experimental design is independent of SAS and is very illuminating: 

https://support.sas.com/techsup/technote/mr2010c.pdf 

DOE Toolkit	 Page 	74

https://www.itl.nist.gov/div898/handbook/pri/pri.htm
https://online.stat.psu.edu/stat503/
https://support.sas.com/techsup/technote/mr2010c.pdf


Appendix 5: References 
[1] Ruth K. Meyer & Christopher J. Nachtsheim (1995) The Coordinate-Exchange Algorithm for 
Constructing Exact Optimal Experimental Designs, Technometrics Vol. 37, No. 1 (Feb., 1995), pp. 
60-69.  

[2] Fedorov, V. V. (1972), "Theory of Optimal Experiments (Review)", Biometrika, cvol. 59, no. 3, 
697-698. 
Translated and edited by W. J. Studden and E. M. Klimko. 

[3] George Derringer & Ronald Suich (1980) Simultaneous Optimization of Several 
 Response Variables, Journal of Quality Technology, 12:4, 214-219,  
 DOI: 10.1080/00224065.1980.11980968 

[4] Engineering Statistics Handbook, National Institute of Standards and Technology (aka NIST) 
website: https://www.itl.nist.gov/div898/handbook 

DOE Toolkit	 Page 	75

https://www.itl.nist.gov/div898/handbook


Index 

activation key  1, 7-10 
augment design  3, 14, 43, 49 
Axial Point Groups  26-27, 36, 43, 51, 61 
Blocking option  3, 22-25, 30, 43, 61-62 
Box-Behnken Design  1, 30 
Central Composite Design  1, 30-31 
Central Points  3, 12, 25-27, 31, 36, 43, 

49, 51, 61 
ConfoundingRules option  31, 34-35, 48, 

51, 54-55 
DataRepresentation option  16-17, 19-20, 

22, 36, 39, 61 
Dataset  1-3, 11, 13-14, 16, 19-21, 23-24, 

28-29, 39-40, 43, 49-51, 53-54, 
56-57, 59, 62-63, 68, 73 

DatasetOpts option  21, 28-29, 43, 62 
desirability  1, 3, 41, 52 
DOE Toolkit.wl  4, 6-9, 47 
doeAugment (see also augment design)  

3, 14, 43, 49 
doeBoxBehnken (see also Box-Behnken 

Design)  3, 30, 50 
doeCentralComposite (see also Central 

Composite Design)  3, 31-32, 51, 54 
doeDesirability (see also desirability)  3, 

41, 52 
doeFactorial (see also Full Factorial 

Design)  3, 13, 15-18, 22, 33-34, 39, 
44, 47, 53-54, 57, 63 

doeFractional (see also Fractional 
Factorial Design)  3, 31-32, 34-35, 
44, 48, 51, 54-55 

doeMixture (see also Mixture Design)  3, 
15, 20, 25-26, 36, 56 

doeOptimal (see also optimal design)  3, 
38-40, 57-58 

doeOrthogonal (see also Orthogonal 
Design)  3, 37, 44, 59 

doeToolkitVersion  45, 60 
factors  15-19, 22-24, 27, 30-31, 34-37, 

40-41, 44, 50-51, 53-57, 59, 61 
Fractional Factorial Design  1, 25, 30-31, 

34, 44 
Full Factorial Design  1, 12-13, 15-16, 22, 

31, 33-34, 44, 57, 63 
levels list  15 
MaxItems option  21, 28 
Mixture Design  1, 20, 36 
Optimal Design  1, 3, 38-40, 57-58, 75 
Orthogonal Design  1, 37, 59 
PatternRepresentation option  19-20, 22, 

36, 61 
randomized block design  22 
RandomizeRuns option  3, 15, 24, 43, 48, 

57, 61-62 
RowNumbers option  16, 62 
Taguchi Designs  1, 37, 44 
XDesign  1, 3, 13, 16, 37-40, 43, 57, 63 

DOE Toolkit	 Page 	76


